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Abstract
The first-order irreversible phase transition (IPT) characteristic of the Ziff–
Gulari–Barshad (ZGB) model is studied by means of extensive numerical
simulations. Using the constant-coverage method it is found that hysteresis
effects hinder the location of the coexistence point. However, the hysteresis
loop is unstable against a negligible small external perturbation, allowing the
determination of the coexistence point quite accurately. Also, by means of
epidemic studies, an existing controversy on the occurrence of scale invariance
in the dynamical behaviour of the system at coexistence is resolved. Our
findings reconcile the behaviour of the first-order IPTs of the ZGB model with
their reversible counterparts.

PACS numbers: 0570J, 0250E, 6460H, 8265J

The study of non-equilibrium systems has become a challenging subject of interest for many
areas of research in physics, chemistry, ecology, catalysis, economics, social sciences etc [1–3].
An intriguing feature of these systems is the occurrence of irreversible phase transitions (IPTs)
between an active regime and an absorbing state where the system becomes trapped. Since
the work of Ziff, Gulari and Barshad (ZGB) [4], second-order IPTs are well understood since
they have been placed either in the directed percolation or parity conserving universality
classes [3, 5]. However, due to the lack of experimental feedback on second-order IPTs, the
huge activity in the field is mainly of academic–theoretical interest, so it is surprising that, in
spite of the existence of experimental evidence on systems undergoing first-order IPTs [6, 7],
our understanding of this subject is far from being satisfactory. In fact, based on standard
epidemic simulations of the ZGB model, Evans et al [8] have claimed that relevant dynamic
quantities (e.g. the number of active sites and the survival probability of the epidemics) exhibit
power-law behaviour at coexistence. The occurrence of scale invariance at first-order IPTs
is certainly a puzzle. A similar controversy has recently arisen in the field of reversible
transitions [9]. However, in this case power-law behaviour can be identified as a finite-
size effect [9]. Furthermore, the existence of hysteresis, which is a signature of first-order
transitions, has, so far, not been theoretically explored in detail in the field of IPTs in spite of
available experimental evidence [7].
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The aim of this paper is to present a study of the first-order IPT of the ZGB model based
on numerical simulations. Hysteresis effects around coexistence are investigated by means of
the constant-coverage (CC) ensemble method as proposed by Ziff and Brosilow [10], while the
coexistence point is located using a variant of the spontaneous creation method due to Bidaux
et al [11]. Furthermore, extensive epidemic simulations allow us to rule out the existence of
scale invariance at coexistence.

The ZGB model [4] is a lattice gas adsorption–reaction model, which reproduces some
relevant features of the catalytic oxidation of carbon monoxide on a crystal surface. It is
assumed that the reaction proceeds according to the Langmuir–Hinshelwood mechanism:

CO(g) + S → CO(a) (1)

O2(g) + 2S → 2O(a) (2)

CO(a) + O(a) → CO2(g) + 2S (3)

where S is an empty site of the lattice, while (a) and (g) refer to the adsorbed and gas phase,
respectively. The ZGB model assumes that CO and O2 molecules randomly hit the surface with
probabilities PCO and PO2 , respectively. Due to the normalization condition PCO + PO2 = 1,
the ZGB model has a single parameter, which in most cases is taken as PCO.

In this paper the ZGB model is simulated in a two-dimensional square lattice of size L,
assuming periodic boundary conditions. During one Monte Carlo time step (MCS) L2 sites
of the sample are selected at random in order to account for the adsorption–reaction steps
described by the set of equations (1)–(3).

Interest in the ZGB model arises because of both its simplicity and its rich and complex
irreversible critical behaviour. In fact, in two dimensions and in the asymptotic regime (t → ∞)
the system reaches a non-equilibrium stationary state whose nature solely depends on the
parameter PCO. For PCO � P1CO � 0.389 857 (PCO � P2CO � 0.5255) the surface becomes
irreversibly saturated (poisoned) by O (CO) species. The system also displays a reactive regime
between the inactive phases, i.e. for P1CO < PCO < P2CO, with a sustained production of CO2.
So, just at P1CO (P2CO) the ZGB model exhibits second-order (first-order) IPTs between the
reactive regime and poisoned states. For additional details of the ZGB model see e.g. [3,4,10].

In order to study hysteresis effects we have employed the CC ensemble [10]. So, in the first
step a stationary configuration is achieved using the standard simulation ensemble [4]. Then,
the system is switched to the CC ensemble, where the density θCO is now kept constant. Using
the CC ensemble, the effective CO pressure (〈PCO〉) is given by the ratio of CO-adsorption
attempts to the total number of adsorption attempts. In simulations, 〈PCO〉 is averaged over τA

time steps. Subsequently, θCO is increased stepwise, allowing the system to relax τR time steps
before each measurement of 〈PCO〉. Using this procedure one can obtain the growing coverage
branch of the CC loop. After reaching a large CO coverage (θCO = 0.95 in this paper), θCO is
now decreased stepwise. In this way the decreasing branch of the CC loop can be recorded.
Notice that, in the CC ensemble, θCO plays the role of the control parameter.

Another approach for the study of IPTs is the epidemic analysis (EA) [8,12,13]. The idea
behind an EA is to initialize the simulation using a configuration very close to the poisoned
(absorbing) state. This configuration can be achieved by filling the whole lattice with CO,
except for a small patch of empty sites in the centre of the sample. Subsequently, during the
time evolution of the system the average number of empty sites (N(t)) is recorded. Of course,
each single EA stops if the sample is trapped in the poisoned state (N(t) = 0). Results are
averaged over 109 different epidemics.

Assuming a power-law behaviour (scaling invariance) the following ansatz is expected to
hold [12]:

N(t) ∝ tη (4)
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Figure 1. Plots of θCO versus 〈PCO〉 obtained using the CC ensemble with τR = 100 MCS,
τA = 2000 MCS and lattices of different size as indicated in the figure. The arrow SP shows the
position of the upper spinodal point P S

CO for the sample of size L = 32. Arrows pointing up and
down show the GB and DB θCO of the hysteresis loop, respectively.

where η is a dynamic critical exponent. The validity of equation (4) for the second-order IPT
observed in the ZGB model is supported by extensive numerical simulations [13]. In fact,
this IPT belongs to the directed percolation (DP) universality class [12, 13]. The observation
of a power-law behaviour for second-order IPTs is in agreement with well established ideas
developed in the study of equilibrium (reversible) phase transitions: scale invariance reflects
the existence of a diverging correlation length at criticality.

Figures 1 and 2 show plots of θCO versus 〈PCO〉 obtained by means of the CC method and
using lattices of different size. Due to the overlapping between both the growing branches
(GBs) and decreasing branches (DBs) of the CC loop, one concludes that in the ZGB model
hysteresis effects are absent for small lattices (e.g. for L � 64 in figure 1). However, hysteresis
loops can be distinguished for larger lattices (e.g. for L = 256 and 1024 in figures 1 and 2,
respectively). Notice that coexistence between the poisoned state and the reactive regime is
observed for a wide range of θCO values (see figure 2).

The CC method allows us to locate the upper spinodal point P S
CO as shown in figure 1 for

the sample of size L = 32. It is found that the upper spinodal point depends on the lattice size.
Then, the L-dependent spinodal points defined as P S

CO(L) are plotted versus L−1 in order to
obtain the asymptotic value in the infinite-size limit (see figure 3). The extrapolation yields
P S

CO(∞) = 0.5270(5). This result can be compared with values previously reported for finite
lattices, e.g. P S

CO(L = 256) � 0.527 [10] and P S
CO(L = ?) � 0.5285 [8].

Also, the average CO pressure corresponding to both the CO GB and DB of the loops
(given by P GB

CO and P DB
CO , respectively) can be evaluated and plotted versus L−1, as shown

in figure 3. Since coexistence is observed for a wide range of θCO values, at least for large
lattices (see e.g. figures 1 and 2), branches can be located with great accuracy. Furthermore,
the position of the branches does not sensitively depend on the lattice size, as shown in figure 3.
So, averaging over the larger samples we obtain P GB

CO
∼= 0.526 41(1) and P DB

CO
∼= 0.524 67(3).

For systems in equilibrium, the location of the coexistence point can be found using
thermodynamic integration [14], but for IPTs one lacks any method based on energetic
arguments. One (naive) approach is to assume that the coexistence point is in the middle
of the hysteresis loop, i.e. P ′

2CO = 0.5255(8). However, a more reliable method can be
envisioned by analysing the stability of both branches of the loop due to the introduction of a
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Figure 2. Plots of θCO versus 〈PCO〉 obtained using the CC ensemble with τR = 100 MCS,
τA = 2000 MCS and lattices of size L = 1024. Curve (a) corresponds to the standard ZGB model
as in figure 1. Arrows pointing up and down show the GB and DB θCO of the hysteresis loop,
respectively. In curve (b) the collapse of both branches into a single vertical curve is due to the
addition of a small desorption rate of CO given by RD = 10−6.
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Figure 3. Plots of the upper spinodal point P S
CO (• SP), P GB

CO (� GB) and P DB
CO (� DB) versus

L−1. More details in the text.

negligible small rate of CO desorption (RD). This procedure is equivalent to the spontaneous
creation method early introduced to study first-order IPTs [11]. Taking RD = 10−6, it is
observed that, while the first-order nature of the IPT remains, both branches become unstable
against the perturbation and collapse into a single vertical line at P2CO = 0.525 83(9), which
we identify with the coexistence point (figure 2). This figure can be compared with the best
available value reported by Ziff and Brosilow [10] given by P2CO

∼= 0.525 60±0.000 01. This
small error bar reported for the coexistence point may be optimistic in view of the lattice size
used in that work.

Second-order critical points are often obtained very accurately by means of the EA [13].
However, we have found that this method is not suitable for locating first-order coexistence
points. Therefore, in order to carry out a reliable EA an accurate determination of the
coexistence point is necessary. As shown above P2CO has been evaluated by using both the CC
ensemble and the spontaneous creation method. Then, we are now in a position to perform an
EA. Results obtained for PCO � P DB

CO show pronounced curvature, with clear evidence of a cut-
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Figure 4. Log–log plots of the number of vacant sites N(t) versus t for EA of the ZGB
model. Results averaged over 109 different runs (� P GB

CO = 0.526 41, P DB
CO = 0.524 67, �

P2CO = 0.525 54, � PCO = 0.523 45). For the latter case, two straight lines have been drawn for
the sake of comparison: the dashed one with ηeff = 2 and the full one with slope 2, respectively.
The inset shows a semi-logarithmic plot of N(t)(T /t)−2 versus t/T with T = 183, according to
equation (5), obtained at P2CO.

off (see figure 4). So, for the ZGB model at coexistence N(t) does not exhibit scale invariance
as observed in second-order IPT. Our finding is in contrast with previous results claiming
power-law and scaling behaviour [8]. The difference may be due to the huge statistics used in
this paper where results are averaged over 109 different runs. For PCO < P DB

CO , N(t) exhibits a
pseudo-power-law behaviour over many decades with an effective exponent ηeff

∼= 2.0 ± 0.1
(see figure 4). Power-law behaviour at a first-order transition can also be observed when
this point is in the neighborhood of a second-order critical point [15], however in the present
case this possibility can be ruled out1. Furthermore, after a long time, a successful epidemic
spreading may prevail causing N(t) to suddenly grow as N(t) ∝ t2, as shown in figure 4,
indicating a spatially homogeneous spreading. In order to understand the behaviour of N(t)

at coexistence we propose a variation of equation (4) given by

N(t) ∼ (t/T )−ηeff exp (−t/T ) (5)

where T sets a characteristic time scale. Our proposal is validated in the inset of figure 4. A
regression analysis gives for the only free parameter T ∼= 183 ± 3, initializing the epidemic
with an empty patch of three sites. Epidemics initialized with patches of sizes six and nine
sites (not shown here) exhibit the same behaviour after a short transient of a few MCS, so the
behaviour of N(t) at coexistence is characterized by a pseudo-power-law behaviour for short
times (t < T ) that crosses over to an asymptotic exponential decay for larger times.

In summary, we have performed an extensive numerical study of the first-order IPTs
of the ZGB model. In contrast to previous belief, this irreversible transition shares several
features with its equilibrium counterpart, namely (i) hysteresis is absent from small samples
but becomes clearly evident in large lattices and (ii) the occurrence of a power law (scale
invariance) in the dynamic behaviour at coexistence, as measured by means of EA, can be

1 Since the transition is to a unique absorbing state, any possible second-order IPT belong to the DP universality
class, such as N(t) ∝ tη with η ≈ 0.214 in two dimensions. Then, in the neighborhood of a DP point, a growing DP
short time behaviour followed by a crossover to the true asymptotic behaviour is expected. However, N(t) exhibit a
decreasing short time behaviour which is in contrast to the above statement.
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safely ruled out. We expect that these numerical findings will be helpful for developing a
theoretical framework in the field of first-order IPTs.
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